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We study oscillations of Rayleigh wave type, spreading along the surface of a 
nonhomogeneous (along the depth) elastic layer resting on an elastic half-space. 
We assume that the Rayleigh velocity on the diurnal surface is less than the trans- 
versal velocity in the layer, but larger than the longitudinal velocity in the half- 

space. In the neighborhood of high frequencies we compute the phase velocity 

of the wave, similar to the usual Rayleigh wave in the Rayleigh problem for the 
homogeneous half-space. It is shown that this phase velocity is not real, as a 

consequence of which the wave diesout as it propagates along the diurnal surface. 

1. Pormulrtioa of the problem. We consider the following plane problem 

(Rayleigh’s problem): the layer -oo < J: ( + 00, 0 < z < a (a > 0) is occu- 
pied by an isotropic elastic medium with parameters k (z), p (z), p (2); for z = a the 
layer is rigidly fixed to a homogeneous isotropic elastic half-space z > a, where the 

parameters h”, p”, p” are constant. The “diurnal” surface z = 0 is free of stress. We 
study in the domain z > 0 solutions of the system of the elasticity equations of the 

form 
u (z, 2, t, k, 0) = eik(r-*o) (--iTI, (2, k, o), 0, V, (2, k, 0)) (1.1) 

satisfying the radiation condition at z + $ 00. 
We are interested in the eigenvalues of the problem, i.e. such values of (5 = 0 (k, 

a) for which there exist nontrivial solutions u (a, z, t, k, (T). For large values of the 

wave number k (k > 0) we will study the domain of phase velocities IS which are 
close to vR , the Rayleigh velocity at the diurnal surface. We assume that 

Here v, (z) is the transverse velocity in the layer, up ’ is the longitudinal velocity in 

in the half-space z > a, i.e. 

DR -------I 
tiable functions for z E IO, al. Thus, in D 

& 
the problem under consideration, the longi- 

us” 
tudinal and the transverse velocities undergo 

I * 
jumps at the point z = a (Fig. 1). At the 

u z surface z = a of the discontinuity of the 

Fig. 1 coefficients, we assume the continuity of the 

The parameters k (z), p (z), p (z) are 

assumed to be twice continuously differen- 
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displacement vector u and of the normal component ‘t, of the stress tensor. 
We introduce, as in [l], the four-dimensional vector Z = Z (z, k, cr) = (Z,, Z,, 

zs, 2,) = (V,, Vs, k_lV~, k-rVs’)(the prime denotes differentiation with respect 
to the variable Z) and we obtain the following boundary-value problem: 

s&Z=o, z=o (1.2) 

z’=@4,4+B(z))z, o<z<a (1.3) 
Q,Z = C22,“zq z=C? (1.4) 

Z”’ = k/i” (a) Z’, z>a 0.5) 

The vector Z” must satisfy the radiation condition in the direction z = + co. Here 
we have made use of the following notation: 

0 -P P 0 
h 0 ov 

Qj=i 0 00 

0 i 00 

t 

0 0 0 0 

0 0 u 0 

B(z)= 0 $. _$ 0 

h 
-- V 0 o-f 

A (2, a) = 

, A”(a) = m *)a 
P 0 0 

T” 

0 

1 

j = 0, 1, v = h + 2 p, y = p i Y, rnt = 1 - u’nt2, I = p, s 
n,,’ = nP” (2) = p (2) / Y (z), ?z,a = n,2 (2) = p (2) I p (2) 

Here and in the sequel, all the quantities referring to the half-space z > a are marked 

with an upper zero index. The relation (1.4) signifies a rigid contact between the layer 
and the half-space. 

The radiation condition is satisfied by the following linear combination of the columns 
of the fundamental matrix P” exp (ik (z - CI) A”) of the system (1.5): 

Z” 1 z>a = P” exp (ik (z - a) A=‘) 9, x* = (x,‘, x2’, 0, 0) 0.6) 

where x1’, xao are arbitrary constants; the matrix P” = PO (CT) reduces A” (CT) to 
the diagonal form iAO, where 

A” = A’ (a) = diag (M,, n/l,, -IV,, --MS}, Ml = M, (0) = 1/- (%?’ 

and Ml > 0 for real cs s r&r, ,? = p, s. 
Let Y \z, k, a) be the fundamental matrix of the system (1.3) on the interval [O. a]. 

The vector Z” can be extended to the interval [O, a] in the formZ=Y (z, k, o) x, 

where x = (xl, x2, x3, x4) is some constant column vector. The contact condition 

(1.4) gives the relation G?t (a) Y (a, k, G) SC = StloPo (G) x0 or 
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x0 = cf, (a, k, u)x 

cf, (u, k, U) = (PO (u))-~ (S&T1 Q, WY (a, k 4 
(1.7) 

It is convenient to take x1, x2 for the two independent arbitrary constants (instead of 

Xl”, X2’). Solving the third and the fourth equation of (1.7) relative to xg, X4, we ob- 
tain 

x3 = b,x, + b+z, ~4 = b,x, + b,x, (1.8) 

bi -= b~(~,k), i - 1, 2, 3, 4 

b, = (@cd’,, - @3&'44) / Q> bz = (@34@,, - @32@44) i q 

b3 = @'43@3, - @33@4J / 4, b4 = (Q>43@3z - @33@42) 1 q 

q = @33@4* -@34@43#0 

The boundary condition (1.2) gives the system of four equations 

Qi, (0) Y (0, k, (T) x = 0 (1.9) 

from which only the first two equations are nontrivial. Inserting (1. 8) into (1.9), we 
obtain two homogeneous equations for x1, xs 

(Fit + b,Pj, + b3~j*) 3~1 + (pi% + ~~~j~+b4~j4) 3~2 = 0 (‘*lo) 

j = 1, 2, 1: = F (0, k) = 52, (0) Y (0, k, (J) 

The eigenvalues of the boundary=value problem (1.2) - (1.5) are determined from 

the condition of degeneration of the system (1.10). 

We formulate the auxiliary “model” Rayleigh problem. Namely, we extend the func- 
tions h (z), p, (z), p (z) for z > a so that for all z > 0 they should be twice con- 
tinuously differentiable, while starting with some z = z* > a they should be constant, 

and for all z > 0 the condition o, (z) > VR should hold. Instead of the radiation con- 
dition we impose the condition of the decrease of the solution Z (z, k, a) at z -+ 00. 

In this problem the solution has the form Y, (z, k, CI) (x1, x2, 0, 0), where 

Y, (z, k, (5) denotes the fundamental matrix of the model problem ; obviously, 

Y, (2, k, of = Y (2, k, o> on the segment z E [O, a]. The boundary condition 
(1.2) gives the system of four equations Sz 0 (0) Y (0, k, CT) (xl, x2, 0, 0) = 0, 
from which the first two are nontrivial 

&xi + Fit%% = 0, i = 1, 2 (1.11) 

The eigenvalues of the model problem are determined from the degeneration condition 
of the system (1.11) 

fi (a, k) = 0 (1.12) 

R (0, 4 = 4, (a, k) 4, (0, 4 - 4, (a, k) F,, (a, k) 

The system (1.10) differs from (1.11) in the presence of the terms containing bt (i =: 
1, 2, 3, 4). Further it will be shown that for k > 1 the quantities bi are exponentially 
small, from where we obtain the nearness of the eigenvalues of the initial and the model 
Rayleigh problems. This phenomenon ought to have been expected sine for short waves 

the “absorber of energy” (i.e. the underlying half-space z > a) is far away from the 
diurnal surface in the vicinity of which the energy of Rayleigh waves is essentially con- 
centrated, and the influence of this absorber on the eigenvalue is small. 
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2. Asymptotic formulas, For the fundamental matrix Y (2, k, o) of the 
system (1.3) we have an asymptotic formu~ for k + 00 (see r2]). 

Y (2, k, 4 = P (2, 4 -t 0 (I@)) D (2, 4 exp [k [ A (5, a) (15)) (2.1) 
0 

Here the matrix T (z, u) reduces A (z, o) to the diagonal form 

Ah, 0) = diag (- mp, - MS, mp, m,) 

1 m, 1 m5 

T@o) = “P ’ -mu -i 
-m?, -maa mp - ma2 
-mp2 -md -mp2 -m, 

D (2, 0) =: (P diag {nap, nzs, mp, m,))-‘i~ 

The radicals ml (2, 0) (1 = p, s) are determined in the complex plane a, cut along 

the rays arg (6 - v,f = 0, arg (~3 -#- 23,) = 5t, and those branches are taken for 
which ml (z, 0) > 0. The asymptotics (2.1) is uniform with respect to z E [O, cd 
and o E 2, where 2; is any compactum in the plane o not containing points of the 

cuts. As 1: we can take, for example, the circle 1 CI 1 < v, - e, E > 0. 
Applying formula (2.1) to Eq. (1. 12). we obtain the equation 

R, (CT) + 0 (E-1) = 0 (2.2) 

R. (G) = (1 + m,’ (0, G))~ - 4 mp (0, CI) m, (0, (T) 

Equation (2.2) has a root on (k) which is close to the positive root UR of the equa- 

tion (* ) R, (u) = 0, namely, 
an (k) = VR -+- 0 (k-1) 

In p] this formula is more precise; it is shown that 

on (k) = v~ + v,k-l + 0 (k-2) (2.3) 

and the quantity Q, depending on 7L (0), p, (0), p (0), 3,’ (01, p’ (O), p’ (0) is com- 
puted (as a consequence of the fact that the model problem is self-adjoint, Im on(k) z 

0). 
We proceed now to the computation of the eigenvalues of the initial problem. Sub- 

stituting the asymptotics (2.1) into the formula (1.8), we obtain the following estimates: 

b, = 0 (Ep2), b, = 0 (E,E,), b3 = 0 (E&J, b4 = 0 (A’,*) 

E,_exp(-k~m,(~,ojdz), I == p, s 
0” 

We take as the domain Z a neighborho~ of the point CT = vn. Since 0 < Re m, 

(2, G) < Re mp (z, G) for G E Z: , the principal contribution in the correction to the 
formula (2.3) is given by b, (0, k), The equation which gives the eigenvalues of the 
initial problem takes the form 

* ) In the case of a homogeneous half-space, the equation I?* (CT) = 0 is called the Ray- 
leigh equation* R (0, k) E RO (a), 0 < vn < 21~ (0). 
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x (G, k) + b* (CT, k) s (a, @II 4 8 ((T, k)l = 0 (2.4) 

Here 

s (0, Ic) - F,, ( CT, !c) F2$ ((3, k) -F,, (CT, k) 44 (a, k) = s0 (o> + 0 W’) 

s, (‘5) Lzz (1 + rn,2 (0, CT))~ + 4 mp (0, 0) ms (0, 4 

E ((T, k) = 0 (‘f&~ f %) 

By virtue of Rouche’s theorem, there exists a root of Eq. (2.4) in the neighborh~d of 
the point t.tn and 

For the imaginary part of 0~ (k, a) we have, in particular, the formula 

Im CR (k, u) = - (p + 0 (k-I)) exp (-2 k i vl - ns2 (2) 7.&b) (2.6) 
0 

For the sake of simplicity, we compute the coefficient $ in the particular case when 
the parameters h and p are continuous, i, e. when h(a. - 0) = h”, CL (a - 0) = /A'; 
in this case the jump of the velocities at the point z = o takes place only at the ex- 

pense of the jump of the parameter p: p (a - 0) ( f,o 
The result of the com~tation is 

fi = vg’n > 0, q = 8, (2%) / li’o’ (vR) = ?-'I? (2 - r)4 / (2 )" 14 (1 + 

7 - 2"(r)-(2-r)31}>0 
a 

v,= exp 2vluR 
1. s 

‘r~,~(z)(l - ns2(z)uR2)-'~~ d.z]> 0 
0 

9 = Im h (~2, 00) = *I f& > 0, r = 2~2% I vs2 (0) 

+I = 2 Q+, (ri, + dp2 + h2), &I = (ul" / VI (a))" < 1 
61 = ml (a, 2%) /MI (a, VR), 1 = p, s 

rf. = (1 - f+> (1 - ES)/ [M, (a, UR) M, (a, VR)] > 0 

$2 = (E + %% - ~pW2 + (Q, + f+sY 

Thus, we have obtained the following result : The Rayleigh problem for the system “lay- 

er on a half-space” has a solution of the form (1.1). corresponding to the phase velocity 
oR (k, a> . As a consequence of the fact that ]m CR (k, a) < 0, the Rayleigh wave, 

running along the surface z = 0, has an exponential decay with respect to time. 

It shouId be noted that the first damped Rayleigh waves in a half-space with mono- 
tonically decreasing velocities vp (z), V, (z) have been studied by Zavadskii p]. The 

scalar problem with a jump in the refraction index n (z) (among others with a complex 
n (2)) has been studied in [4]. 
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